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Earth and Mercury
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Equatorial B-Fields: 32,000 nT and 200 nT



Courtesy R. Vervack



Slavin et al. [2009]

Mercury’s Reconnection-Driven Magnetosphere
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Courtesy J. Jasinski (JPL/Caltech)
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Ion Outflow - H+ and Na+ Plasma Mantle
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H+ Ions Na+ Ions

Jasinski et al. (2017)



Cross-Magnetosphere Electric Potential
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Substorms at Mercury:
Extreme Loading – Unloading Events
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Slavin et al. (Mercury, 2018)



bipolar in Bz

core field in By

total field enhancement

Flux rope, 
tailward traveling!

energetic e-!
(observation of 
Fermi acceleration?)

Energetic Electrons in Cross-tail Current 
Sheet Flux Ropes at Mercury

Courtesy R. Dewey



t = 14 Ωi
-1

t = 20 Ωi
-1

formation, 
growth, 
merging of 
secondary 
magnetic 
islands

heating 
around 
rims and 
inside 
islands

Drake et al. (2006; 2008)

Fermi Acceleration of Electrons in Coalescing Flux Ropes



Flux Rope Coalescence and Energetic Electron 
Acceleration

• Total area preserved
• Magnetic flux of largest island is 

preserved 
• Particle conservation laws

p|| L
• Field line shortening drives energy gain

– No energy gain when isotropic
Courtesy of J. Drake
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Solar Wind – Core Coupling

(Hood and Schubert, 1979; Slavin et al., 1979; 2014)

The harder the Solar Wind pushes … the more induction 
currents add to Mercury’s magnetic moment, but dayside 
magnetic reconnection has the opposite effect.
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Highly Compressed Magnetosphere

1Psw ~ 50 nPaSlavin  et al. (2018)



Disappearing Dayside Magnetosphere (DDM) Events

14Slavin  et al. (2018) Psw ~ 140 nPa



DDM Magnetosheath

15Slavin  et al. (2018)
Psw ~ 140 nPa
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Psw ~ 180 nPa

DDM Magnetosheath

Slavin  et al. (2018)
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DDM Magnetosheath

Psw ~ 290 nPa
Slavin  et al. (2018)
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DDM Magnetosheath Flux Transfer Events

Slavin  et al. (2018)



Low Altitude DDM Bow Shock & Magnetopause

19Slavin  et al. (2018)
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Solar Wind Compression, Induction and 
Reconnection at Mercury

20Slavin  et al. (2018)

Glassmeier et al.
(2009)
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Summary
• Proximity to the Sun matters - - Mercury’s magnetosheath tends to 

be low beta and develops a thick plasma depletion layer, which 
supports very fast symmetric reconnection. As a result reconnection 
driven dynamics at Mercury depends more upon IMF intensity and 
than southward IMF Bz (i.e. magnetic shear angle).

• Dimensionless reconnection rate at Mercury’s magnetopause is ~ 3 
to 10 times faster than at Earth) resulting in a “Dungey cycle” (i.e. 
substorm time cycle) of only ~ 3 min duration.

• Approximately once per Earth year MESSENGER observed 
“Disappearing Dayside Magnetosphere Events” that expose the 
forward hemisphere of Mercury’s surface to direct solar wind 
impact. These DDMs appear due to CME associated extreme solar 
wind dynamics pressure and intense southward magnetosheath Bz.
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Shocks and Discontinuities
Two especially useful frames: the normal incidence frame and the de-Hoffman-Teller 
frame.

In the normal incidence frame the upstream flow is parallel to n.  There is a motional 
electric field Eu = -uu ´ Bu, perpendicular to both u and B and parallel to the shock’s plane.
To make motional electric field zero: to find a frame in which the upstream flow and 
magnetic field are parallel and the shock is stationary. This is obtained by adding a 
transformation velocity VHT parallel to the shock plane.  New frame called de Hoffman-
Teller frame.
Properties of HTF:
² Particles upstream have simple motion, parallel to magnetic field direction and gyration.
² Energy of a particle is constant
² Transformation velocity VHT is the same downstream as it is upstream.

NIF HTF



Ø In both fluid dynamics and MHD conservation equations for mass, energy and 
momentum have the form:                              , where Q and    are the density 
and flux of the conserved quantity.

Ø If a discontinuity or shock is steady (∂/∂t = 0) and one-dimensional (∂Fn/∂n) = 
1 or                            , where u and d refer to upstream and downstream and    
is the unit normal to the discontinuity surface.  We normally write this as a 
jump condition [Fn] = 0.

Ø Conservation of Mass (∂/∂n)(rvn)=0 or   [rvn] = 0.

Ø Conservation of Momentum                                         where the first term is 
the rate of change of momentum and the second and third terms are the 
gradients of the gas and magnetic pressures in the normal direction.
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Conservation Laws
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ØConservation of momentum:                                   
The subscript t refers to components that are 
transverse to the shock (i.e. parallel to the 
shock surface).

ØConservation of energy:

There we have used pr-g = const.  The first two 
terms are the flux of kinetic energy (flow energy 
and internal energy) while the last two terms 
come from the electromagnetic energy flux                
.
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Ø The jump conditions are a set of 6 equations. If we want to find the downstream 
quantities, given the upstream quantities, then there are 6 unknowns (r, vn,, vt, p, Bn, Bt).

Ø The solutions to these equations are not necessarily shocks. These are conservation laws 
and a multitude of other discontinuities can also be described by these equations.

Types of Discontinuities in Ideal MHD
Contact Discontinuity vn = 0, Bn ≠ 0 Density jumps arbitrary, all 

others continuous. No plasma 
flow. Both sides flow together 
at vt.

Tangential Discontinuity vn = 0, Bn = 0 Complete separation. Plasma 
pressure and field change 
arbitrarily, but pressure balance

Rotational Discontinuity vn ≠ 0, Bn ≠ 0
vn = Bn/(µ0r)1/2

Large amplitude intermediate 
wave, field and flow change 
direction but not magnitude.
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Outline
• MHD Discontinuities 
– Tangential
– Rotational

• Minimum Variance Analysis

• deHoffmann-Teller Frame Analysis

• Grad-Shafranov Reconstruction



MHD Discontinuities
• Rankine-Hugoniot Jump Conditions
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Tangential Discontinuity

• Simplest case: !",$ = !",& = 0

• Pressure Balance: ($ +
*+,,-
&./

= (& +
*+,--
&./

• Plasma pressure, tangential B and density are 
discontinuous across discontinuity surface



Rotational Discontinuity

• Plasma pressure, tangential B and density are 
continuous across discontinuity surface

• !",$ = !",& ≠ 0 , )*,$ = )*,& = )* and +*,$ =
+*,& = +*

,
, − 1/$ +

+1,$&
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AnOverview



Minimum Variance Analysis

• Computation of the normal direction of the discontinuity to determine 
type of discontinuity

• Other applications include flux rope analysis

• Minimum Variance Analysis (MVA) 
– Sonnerup and Cahill (1967)
– Analysis Methods for Multi-Spacecraft Data [Sonnerup and Scheible, 1998]

• Assumptions:
1. Transitional layer is 1-D 
2. Time independent ( !!" = 0 )
3. Minimum set of 3 vectors required



Minimum Variance Analysis
• Method is used to determine the B-field in the normal direction !" [Sonnerup and 

Scheible, 1998]

• !" is defined as  minimum variance direction (i.e. direction in which B-field varies 
the least)
– Can be expressed in the following equation:

– Solution can be written as a eigenvalue-eigenvector problem:

– Results are 3 eigenvectors that forms an orthogonal basis and corresponding 3 
eigenvalues

– The eigenvector that corresponds to smallest eigenvalue is defined as !"

min&' = min 1* +
,-.

/
01(,) − 01 5 !" '

+
6-.

7
*869 "6 = :"8 *869 = 1816 − 18 16

APPROVED FOR THE 

FAINT-HEARTED!!



Recipe for MVA
• Step 1: Construct the covariance matrix Mµν (See 

previous slide)

• Step 2: Solve the eigen-problem by diagonalizing Mµν
– Express Mµν = PDP-1 , where P is an invertible matrix and 

D is the diagonal matrix 
– Each columns of matrix P corresponds to each eigenvectors 

that form the basis for the MVA coordinate system. 
– Each diagonal term of D corresponds to the individual 

eigenvalues
– Computation of eigen-values/vectors is non-trivial (even 

for 3x3 matrix), hence numerical methods using preferred 
programming language is recommended (e.g. Matlab, IDL 
or Mathematica etc)



• Step 3: Transformation of magnetic field data in 
xyz coordinate (or any other coordinate system) 
into the MVA coordinate system using the 
eigenvectors computed from Step 2.
– Example: We have a set of N numbers of data points 

for Bx, By and Bz
– After performing MVA on the data set, we obtained 3 

eigenvectors: "̅#$%, "̅$%&, "̅#'( that form the basis for 
the MVA coordinate system.

– We can then find the vector in MVA coordinate by 
doing dot product for each xyz magnetic field vector 
on each eigenvector (i.e. coordinate transformation)
• E.g. )* + "̅#$% = *#$%

Recipe for MVA



Examples: 

• Normal direction !"# = (0.88, 0.46, -0.14)
• Little deviation from $# = 0 for $'-$#

hodogram suggest tangential discontinuity 
• Unclear signature for $'-$# hodogram also 

suggest rotational discontinuity

� Normal direction !"# = (-0.98, 0.04, 0.17)
� Little deviation from $# ≠ 0 for $'-$#

hodogram  and clear rotational signature for 
$'-$# hodogram strongly suggest rotational 
discontinuity



Better Examples (MESSENGER)



Flux Ropes
• What is a Flux Rope?

– Helical magnetic flux tube with a strong core 
field

– Common phenomenon in space plasma 
physics 

• Formation of FR at planetary magnetospheres
– Flux Transfer Events (FTEs) at magnetopause are flux 

ropes too

– Widely-accepted formation theory is multiple 
X-line reconnection at the plasma sheet in the 
magnetotail

– FR  formed at the magnetotail can be classified 
into 2 categories [Slavin et al 2003a,b]:
Ø Earthward propagating Bursty Bulk Flow 

(BBF)
Ø Tailward propagating plasmoid

Russell and Elphic, 1979

Slavin et al., 2002



Common Flux rope Analysis Technique
• Force-Free Flux Rope Model

– Burlaga [1988], Lepping et al., [1990]

• Assumptions:
1. Force free ( ̅"× $% = 0)
2. Cylindrical geometry

• Force-free equation ((× $% = ) $%) can be solve analytically in cylindrical 
coordinate [Lundquist, 1950]

• Model results is fitted to data to infer physical properties of flux rope

• Limitations:
1. Flux ropes are rarely force free due to internal/external plasma pressure 

acting on the structure
2. Only 60% of the flux ropes agrees reasonably well with the force-free model 

while the remaining 40% cannot be modeled Slavin et al., 2003b

Axial	Component
%7 = %8"8 )9

Tangential Component
%: = %8;"< )9



MVA Flux Rope Analysis 

• MVA is common tool used to analyze Flux Ropes 
everywhere

• MVA can be used to determine the direction of 3 
axis of the helical structure.

• In an ideal situation (as shown from figure 
above)

– Minimum direction is parallel to direction of travel

– Intermediate direction is parallel to the axis of the 
flux rope

– Maximum direction is in the direction of the rotation 
of the field. 

• Limitations?
Borg et al., 2012



Example of MVA on Flux Rope Analysis

Adapted from Imber and Slavin presentation

• Notice that the eigen value 
ratios are > 1.5. Typically 
eigenvalue ratio > 1.5 suggest 
that the eigenvectors are well 
determined. 

• If eigenvalues ratios < 1.5, the 
eigenvalues are degenerate, 
which means the 
corresponding eigenvectors are 
not unique.

• This could also suggest that the 
magnetic structure is 2-D in 
nature.

• Examples: Travelling 
Compression Regions (TCRs)
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deHoffmann-Teller (HT) Analysis
• Convection electric field !" = −&̅× !( in the observer 

frame of reference

• HT frame is the frame of reference where !" vanishes

• To determine properties of the MHD structure, it is 
important to determine the HT frame velocity

• For simplicity, we will discuss the HT frame analysis for 
1-D structures such as shocks and MHD discontinuities



• Frozen-in condition requires presence of convection E-field ( !" = −&̅× !() in 
observer frame

• Transforming into a frame where !" ~ 0
– This frame is known as the deHoffmann-Teller (HT) Frame  [deHoffmann and Teller, 1950]
– Non-iterative, least-square method first developed by Sonnerup et al [1987, 1990] to 

determine the HT velocity &̅+,

• Theory:
– Define the mean square of the electric field -(&) to be:

– 0 is the HT velocity that minimize - & (i.e. 12- & = 0)
– Solution is given by: 

– Equation above can be rearrange to become: 

deHoffmann-Teller Frame

- & = 1
45

678

9
": 6 ; = 1

45
678

9
&(<) − 0 ×( < ;

=>0+, = =(6)&(6)

0+, = =>?8 =(6)&(6)



• !(#) is defined as the projection matrix onto 
the plane perpendicular to %(#) multiplied by 
%(&)' and is given by the equation: 

!()(#) = % # ' +() −
%)(#)%((#)
% & '

• !- is then defined as:
!- ≡ !(#)

deHoffmann-Teller Frame



• Determine quality of HT frame

• Correlation comparison between:
– Convection ( !"#(%) = −*̅ % × !, % ) E-field
– HT ( !"-.(%) = −!/-.× !, % ) E-field

• High correlation means well-determined HT frame and vice versa

• One of the reasons for poorly-determined HT frame could be due to 
acceleration of the frame

• Hence, the acceleration term had to be accounted for before the HT 
velocity could be used for further analysis

deHoffmann-Teller (HT) Analysis



Example:

Øieroset et al., 2000, JGR



Walén Condition
• For a rotational discontinuity, accelerated 

plasma flow is alfvénic in the HT frame

• Walén Relation 

!" = ! − %&' = ±
)*
+,-

• This relation has major application in 
understanding magnetic reconnection



Magnetic Reconnection
• Generalized Ohm’s Law

• De-magnetization of protons results in 
quadrupolar Hall field in the diffusion region

Øieroset et al., 2001, Nature



Magnetic Reconnection

Øieroset et al., 2000, JGR



• (Upper) Good correlation between flow 
velocity in HT frame and local Alfven velocity. 

• Positive correlation suggest flow in region I/III 
of quadrupolar field

• Flow is only 59% of !"

Walén Condition Example:

� (Lower) Again, good correlation between flow 
velocity in HT frame and local Alfven velocity. 

� Negative correlation suggest flow in region 
II/IV of quadrupolar field

� Flow is only 52% of !"

Øieroset et al., 2000, JGR
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Some Definitions
• Reconstruction plane is the xy-plane

• Invariant axis z means !!" = 0

• Transverse means the x, y components

• Magnetic potential vector $̅ in the &̂

– '( = *×$̅

– A(x,y) is the stream function for the field lines 



Assumptions
• Magnetic structure is approx. 2-D

• Proper frame where the structure appears stationary i.e. !!" = 0

– The deHoffmann-Teller frame 

• Convective inertia term neglected in the momentum equation

• Transverse Pressure, Bz and thermal pressure are field line 
invariants 
– Only dependent on magnetic potential A



Grad-Shafranov Equation
• For a 2-D, coherent, magnetohydrostatic 

structure

• After some math and ….

!"# = ̅&× ()



Become like this!!



• You get the Grad-Shafranov Equation
Grad-Shafranov Equation

!"# = %"#
%&" +

%"#
%(" = −*+

,
,# - + ./"

2*+



The Recipe
• Reconstruction process uses the GSE components of:
– B-field
– plasma velocity
– plasma density 
– Temperature 

• Step 1: Use minimum-variance analysis (MVA) to find 
the normal vector !" (Sonnerup and Scheible[1998])

• Step 2: Determine the HT frame velocity #$%& and 
construct the Walen plot to justify the neglecting of 
inertia terms (Khrabrov and Sonnerup[1998])

Steps adapted from Hau and Sonnerup 1999



How to determine if a good frame is 
chosen?

!"#(%) = −)"#×+(%)

Figure from 
Khrabrov & Sonnerup 1998



What is a Walen plot?
• Basically it is a component-by-component 

scatterplot of plasma velocities in the HT 
frame and their relation to the local measured 
Alfven velocities

Figure from 
Khrabrov & Sonnerup 1998



The Recipe
• Step 3: Select the invariant axis !̃# and the 

corresponding unit vector $%& and $%'

• Step 4: Projection of HT velocity ()*+ onto the %& %'
plane to obtain ()*+,
– let the unit vector -& to lie along −()*+,
– #̂ = !̃#
– -' = #̂ x -&

• Step 5: Interpolation of data using a cubic spline



The Recipe

• Step 6: Obtain A(x,0) along the spacecraft trajectory by 

integrating !" = −%&
%'

• Step 7: Function of ( + *+,
-./

w.r.t A(x,0) can be 

prepared and differentiated for use on the R.H.S of the 
GS equation

• Flux ropes: Single-value function 

• Magnetopause: Possibly double-value function

0 1, 0 = −4!" 51 , 0 1, 0 = −67 4
7

89
!" 5:′



The Recipe
• Step 8: Treating it as a spatial initial problem, we can 

then Taylor expand ! ",±∆& into:

– With '
()

'*( = − '()
'-( − ./ '01')

– A new value of 2- can be computed by Taylor expanding 
2-:

! ",±∆& = ! ", 0 ± ∆& 4!(", 0)
4& + ∆& 8 48!

4&8 + ⋯

! ",±∆& = ! ", 0 + ∆& 2-(", 0) + ∆& 8 48!
4&8

2- ", ±∆& = 2- ", 0 ± ∆& 42-
4& = 2- ", 0 ± ∆& 48!(", 0)

4&8



• Step 9: Finite Difference Method to evaluate

– Integration domain is rectangular, as compared to 
rhombus shaped

The Recipe

!"#
!$" %

= 2#% − 5#%*+ + 4#%*" − 2#%*.
∆$ "

Central Difference 



• Solving the GS equation as an initial value problem (Cauchy 
Problem) leads to numerical instability

– Exponential growth

• Need for a “suppressing” algorithm

– Do a running, 3-point, weighted averages

• To extend the integration domain, a total pressure 
adjustment method is introduced (Hu and Sonnerup 2003)

The Recipe



Why GS Reconstruction?
• Common method to determine physical and magnetic properties of 

flux ropes: Fitting of a Bessel Function solution to the force-free 
equation

– Makes assumption of its structure such as axisymmetric 
– GS Reconstruction doesn’t 

• Magnetic Structures of the magnetopause

– X-Type nulls 
– Presence of magnetic islands

• Besides the fact that it also creates 2.5/3 dimensional pretty plots!!!
– Magnetic transects



Magnetic Properties Physical Properties
Maximum axial field strength Velocity and direction in which the 

structure is travelling (whether it is 
accelerating, decelerating or constant 
velocity)

Magnetic topology Size/diameter
Helicity Axis orientation
Plasma Properties such as axial current, 
plasma pressure, number density and 
temperature

Twist of field lines

Chirality Impact parameters
Presence of magnetic island and X-lines Expansion or contraction

Position of X-lines

What can we learn through GS-
Reconstruction?



Results

Hu and Sonnerup 2003

AMPTE Oct 30, 1984



Results

Hu and Sonnerup 2003



Figures from Hu & 
Sonnerup 2001

Results

Reconstructed flux ropes 
for WIND May 2, 1996 
(left) and March 13, 1996 
(right) events.



Results

Figures from Hu & Sonnerup 2002

Time series of Wind 18 October 
1995 magnetic
cloud event

Time series of Wind 9 January 
1997 magnetic
cloud event



Figures from Hu & Sonnerup 2002

Results



Figures from Hu & Sonnerup 2002

Results



Figures from Hu & Sonnerup 2002

Results



Figures from Hu & Sonnerup 2002

Results



Figures from Hu 
et al 2003

Results

ACE MAG and 
SWEPAM 
measurements on 
August 12, 2000



Figures from Hu 
et al 2003

Results



Other Results
• Time Evolution of magnetohydrostatic Grad-Shafranov 

equilibria using single spacecraft data 
– Basic idea is to advance the set of spatial data before and after 

the actual spacecraft-data, then produce a series of field maps
– i.e. do the time integration first, then the spatial integration
– Hasegawa et al 2010

• Multi-Spacecraft
– Cluster 
– Combined GSR field maps from all 4 spacecraft 
– Sonnerup et al 2004



Sonnerup et al 2004 

Figures from 
Sonnerup et al 2004



Limitations
• Cannot be used for vortices with rapid temporal 

variation

• Numerical instabilities 

• The maximum integration domain

• Availability of spacecraft plasma data 

• Extrapolation and interpolation of data

WARNING!!!!!



That’s all folks!!

Questions??


