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Magnetic fields in the Universe

Earth
Magnetic field present for ∼ 3.5 · 109 years, much longer than
Ohmic decay time (∼ 104 years)
Strong variability on shorter time scales (103 years)

Mercury, Ganymede, (Io), Jupiter, Saturn, Uranus, Neptune
have large scale fields

Sun
Magnetic fields from smallest observable scales to size of sun
11 year cycle of large scale field (Movie)
Ohmic decay time ∼ 109 years (in absence of turbulence)

Other stars
Stars with outer convection zone: similar to sun
Stars with outer radiation zone: most likely primordial fields

Galaxies
Field structure coupled to observed matter distribution (e.g.
spirals)
Only dynamo that is directly observable
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Scope of this lecture

Processes of magnetic field generation and destruction in
turbulent plasma flows

Introduction to general concepts of dynamo theory (this is not
a lecture about the solar dynamo!)

Outline

MHD, induction equation
Some general remarks and definitions regarding dynamos
Large scale dynamos (mean field theory)

Kinematic theory
Characterization of possible dynamos
Non-kinematic effects

3D simulations
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MHD equations

The full set of MHD equations combines the induction equation
with the Navier-Stokes equations including the Lorentz-force:

∂%

∂t
= −∇ · (%v)

%
∂v

∂t
= −%(v ·∇)v −∇p + %g +

1

µ0
(∇× B)× B + ∇ · τ

%
∂e

∂t
= −%(v ·∇)e − p∇ · v + ∇ · (κ∇T ) + Qν + Qη

∂B

∂t
= ∇× (v × B− η ∇× B)

Assumptions:

Validity of continuum approximation (enough particles to
define averages)

Non-relativistic motions, low frequencies

Strong collisional coupling: validity of single fluid
approximations, isotropic (scalar) gas pressure
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MHD equations

Viscous stress tensor τ

Λik =
1

2

(
∂vi

∂xk
+

∂vk

∂xi

)
τik = 2%ν

(
Λik −

1

3
δik∇ · v

)
Qν = τikΛik ,

Ohmic dissipation Qη

Qη =
η

µ0
(∇× B)2 .

Equation of state

p =
% e

γ − 1
.

ν, η and κ: viscosity, magnetic diffusivity and thermal conductivity
µ0 denotes the permeability of vacuum
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Kinematic approach

Solving the 3D MHD equations is not always feasible

Semi-analytical approach preferred for understanding
fundamental properties of dynamos

Evaluate turbulent induction effects based on induction
equation for a given velocity field

Velocity field assumed to be given as ’background’ turbulence,
Lorentz-force feedback neglected (sufficiently weak magnetic
field)
What correlations of a turbulent velocity field are required for
dynamo (large scale) action?
Theory of onset of dynamo action, but not for non-linear
saturation

More detailed discussion of induction equation
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Ohm’s law

Equation of motion for drift velocity vd of electrons

me

(
∂vd

∂t
+

vd

τei

)
= −e(E + vd × B)−∇pe

τei : collision time between electrons and ions
−e: electron charge
me : electron mass
pe : electron pressure
With the electric current: j = −n e vd this gives the generalized
Ohm’s law:

∂j

∂t
+

j

τei
=

nee
2

me
E− e

me
j× B +

ne e

me
∇pe

Simplifications:

τei ωL � 1, ωL = eB/me : Larmor frequency

neglect ∇pe

low frequencies (no plasma oscillations)
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Ohm’s law

Simplified Ohm’s law
j = σE

with the plasma conductivity

σ =
τeinee

2

me

The Ohm’s law we derived so far is only valid in the co-moving
frame of the plasma. Under the assumption of non-relativistic
motions this transforms in the laboratory frame to

j = σ (E + v × B)
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Induction equation*

Using Ampere’s law ∇× B = µ0j yields for the electric field in the
laboratory frame

E = −v × B +
1

µ0σ
∇× B

leading to the induction equation

∂B

∂t
= −∇× E = ∇× (v × B− η ∇× B)

with the magnetic diffusivity

η =
1

µ0σ
.
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Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit

∂B

∂t
= ∇×

(
v × B− 1

Rm
∇× B

)
with the magnetic Reynolds number

Rm =
U L

η
.

Rm � 1: diffusion dominated regime

∂B

∂t
= η∆B .

Only decaying solutions with decay (diffusion) time scale

τd ∼
L2

η
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Advection, diffusion, magnetic Reynolds number

Rm � 1 advection dominated regime (ideal MHD)

∂B

∂t
= ∇× (v × B)

Equivalent expression

∂B

∂t
= −(v ·∇)B + (B ·∇)v − B∇ · v

advection of magnetic field

amplification by shear (stretching of field lines)

amplification through compression
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Advection, diffusion, magnetic Reynolds number

Object η[m2/s] L[m] U[m/s] Rm τd

earth (outer core) 2 106 10−3 300 104 years
sun (plasma conductivity) 1 108 100 1010 109 years
sun (turbulent conductivity) 108 108 100 100 3 years
liquid sodium lab experiment 0.1 1 10 100 10 s
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Alfven’s theorem

Let Φ be the magnetic flux through a surface F with the property
that its boundary ∂F is moving with the fluid:

Φ =

∫
F

B · df −→ dΦ

dt
= 0

Flux is ’frozen’ into the fluid

Field lines ’move’ with plasma
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Dynamos: Motivation

For v = 0 magnetic field decays on timescale τd ∼ L2/η

Earth and other planets:

Evidence for magnetic field on earth for 3.5 · 109 years while
τd ∼ 104 years
Permanent rock magnetism not possible since T > TCurie and
field highly variable −→ field must be maintained by active
process

Sun and other stars:

Evidence for solar magnetic field for ∼ 300 000 years (10Be)
Most solar-like stars show magnetic activity independent of age
Indirect evidence for stellar magnetic fields over life time of
stars
But τd ∼ 109 years!
Primordial field could have survived in radiative interior of sun,
but convection zone has much shorter diffusion time scale
∼ 10 years (turbulent diffusivity)
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Mathematical definition of dynamo

S bounded volume with the surface ∂S , B maintained by currents
contained within S

∂B

∂t
= ∇× (v × B− η ∇× B) in S

∇× B = 0 outside S

[B] = 0 across ∂S

∇ · B = 0

v = 0 outside S , n · v = 0 on ∂S and

Ekin =

∫
S

1

2
%v2 dV ≤ Emax ∀ t

v is a dynamo if an initial condition B = B0 exists so that

Emag =

∫ ∞

−∞

1

2µ0
B2 dV ≥ Emin ∀ t
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Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale
part (energy carrying scale of turbulence) B = B + B′:

Emag =

∫
1

2µ0
B

2
dV +

∫
1

2µ0
B′2 dV .

Small scale dynamo: B
2 � B′2

Large scale dynamo: B
2 ≥ B′2

Almost all turbulent (chaotic) velocity fields are small scale
dynamos for sufficiently large Rm, large scale dynamos require
additional large scale symmetries (see second half of this lecture)
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Large scale/small scale dynamos

Amplification through field line stretching

Twist-fold required to repack field into original volume

Magnetic diffusivity allows for change of topology
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Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

Fast dynamo: growth rate independent of Rm

(stretch-twist-fold mechanism)

Slow dynamo: growth rate limited by resistivity
(stretch-reconnect-repack)

Fast dynamos relevant for most astrophysical objects since
Rm � 1

Dynamos including (resistive) reconnection steps can be fast
provided the reconnection is fast
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Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

B = BeΦ + ∇× (AeΦ)

v = vrer + vθeθ + Ω r sin θeΦ

Differential rotation most dominant shear flow in stellar convection
zones:

Meridional flow by-product of DR, observed as poleward surface
flow in case of the sun

Matthias Rempel Creation and destruction of magnetic fields



Differential rotation and meridional flow

Spherical geometry:

∂B

∂t
+

1

r

(
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)
=

r sin Bp ·∇Ω + η

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
+

1

r sin θ
vp ·∇(r sin θA) = η

(
∆− 1

(r sin θ)2

)
A

Meridional flow: Independent advection of poloidal and
toroidal field

Differential rotation: Source for toroidal field (if poloidal field
not zero)

Diffusion: Sink for poloidal and toroidal field

No term capable of maintaining poloidal field against Ohmic
decay!

Matthias Rempel Creation and destruction of magnetic fields



Differential rotation and meridional flow

Weak poloidal seed field can lead to significant field
amplification

No source term for poloidal field

Decay of poloidal field on resistive time scale

Ultimate decay of toroidal field

Not a dynamo!

What is needed?

Source for poloidal field
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Cowling’s anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a
finite volume in space cannot be maintained by a velocity field with
finite amplitude.

Ohm’s law of the form j = σE only decaying solutions, focus here
on j = σ(v × B).
On O-type neutral line Bp is zero, but µ0jt = ∇× Bp has finite
value, but cannot be maintained by (v × B)t = (vp × Bp).
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Large scale dynamo theory

Some history:

1919 Sir Joeseph Larmor: Solar magnetic field maintained by
motions of conducting fluid?

1937 Cowling’s anti-dynamo theorem and many others

1955 Parker: decomposition of field in axisymmetric and
non-axisymmetric parts, average over induction effects of
non-axisymmetric field

1964 Braginskii, Steenbeck, Krause: Mathematical frame
work of mean field theory developed

last 2 decades 3D dynamo simulations
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Reynolds rules

We need to define an averaging procedure to define the mean and
the fluctuating field.
For any function f and g decomposed as f = f + f ′ and
g = g + g ′ we require that the Reynolds rules apply

f = f −→ f ′ = 0

f + g = f + g

f g = f g −→ f ′g = 0

∂f /∂xi = ∂f /∂xi

∂f /∂t = ∂f /∂t .

Examples:

Longitudinal average (mean = axisymmetric component)

Ensemble average (mean = average over several realizations
of chaotic system)

Matthias Rempel Creation and destruction of magnetic fields



Meanfield induction equation

Average of induction equation:

∂B

∂t
= ∇×

(
v′ × B′ + v × B− η∇× B

)
New term resulting from small scale effects:

E = v′ × B′

Fluctuating part of induction equation:(
∂

∂t
− η∆

)
B′−∇×(v×B′) = ∇×

(
v′ × B + v′ × B′ − v′ × B′

)
Kinematic approach: v′ assumed to be given

Solve for B′, compute v′ × B′ and solve for B

Term v′ × B′ − v′ × B′ leading to higher order correlations
(closure problem)
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Second order correlation approximation (SOCA)

Second order term can be neglected if

|B′| � |B|
|v′ × B′ − v′ × B′| � |v′ × B|
∇× (v′ × B′ − v′ × B′) correlates only weakly with v′

Sufficient condition:

Rm � 1 or S = vτc/lc � 1 −→ |B′| � |B|
Problem: Rm � 1 and S ∼ 1 in stellar convection zones

In praxis it works better than it should!
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Second order correlation approximation (SOCA)

Neglecting higher order moments and assume τ � τc :

B′ ≈ τc∇×
(
v′ × B

)
= −τc(v

′ ·∇)B+τc [(B ·∇)v′ − B∇ · v′]

leads to the expression:

E = αB + γ × B− β ∇× B + . . .

with (α and β are symmetric tensors):

αij =
1

2
τc

(
εiklvk

′∂vl
′

∂xj
+ εjklvk

′∂vl
′

∂xi

)
γi = −1

2
τc

∂

∂xk
v ′i v

′
k

βij =
1

2
τc

(
v′2δij − vi

′vj
′
)
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Second order correlation approximation (SOCA)

Simplification for (quasi) isotropic, non-mirror symmetric, (weakly)
inhomogeneous turbulence:

vi
′vj

′ ∼ δij , αij = αδij , βij = ηtδij

Leads to:

α =
1

3
αii = −1

3
τc v′ · (∇× v′) ∼ ηt

lc
∼ vrms

ηt =
1

3
βii =

1

3
τc v′2 ∼ lc vrms

γ = −1

2
∇ηt

Induction equation for B:

∂B

∂t
= ∇×

[
αB + (v + γ)× B− (η + ηt) ∇× B

]
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Turbulent diffusivity - destruction of magnetic field

Turbulent diffusivity dominant dissipation process for large scale
field in case of large Rm:

ηt =
1

3
τc v′2 ∼ L vrms ∼ Rmη � η

Formally ηt comes from advection term (transport term,
non-dissipative)

Turbulent cascade transporting magnetic energy from the
large scale L to the micro scale lm (advection + reconnection)

ηj2m ∼ ηt j
2 −→ Bm

lm
∼

√
Rm

B

L

Important: The large scale determines the energy dissipation rate,
l adjusts to allow for the dissipation on the microscale.
Present for isotropic homogeneous turbulence
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Turbulent diamagnetism, turbulent pumping

Expulsion of flux from regions with larger turbulence intensity
’diamagnetism’

γ = −1

2
∇ηt

Downward directed at base of convection zone

Turbulent pumping (stratified convection):

Upflows expand, downflows converge

Stronger velocity and smaller filling factor of downflows

Mean advection effect of up- and downflows does not cancel

Downward transport found in numerical simulations

Requires inhomogeneity (stratification)
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Kinematic α-effect

α = −1

3
τc v′ · (∇× v′) Hk = v′ · (∇× v′) kinetic helicity

Requires rotation + additional preferred direction (stratification)
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Fast or slow dynamo?

Turbulent induction effects require reconnection to operate;
however, the expressions

αij =
1

2
τc

(
εiklvk

′∂vl
′

∂xj
+ εjklvk

′∂vl
′

∂xi

)
γi = −1

2
τc

∂

∂xk
v ′i v

′
k

βij =
1

2
τc

(
v′2δij − vi

′vj
′
)

are independent of η (in this approximation), indicating fast
dynamo action.
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Validity of Mean field expansion

Second order correlation approximation:

At best marginally justified

Works better than it should

Most general form for mean field expansion:

E i (x, t) =

∫ ∞

−∞
d3x ′

∫ t

−∞
dt ′Kij(x, t, x

′, t ′)Bj(x
′, t ′) .

Sufficient scale separation

lc � L

τc � τL

leads to:

E = αB + γ × B− β ∇× B− δ ×∇× B + . . .

In stellar convection zones scale separation also only marginally
justified (continuous turbulence spectrum)!
Large scale convection (M. Miesch, HAO)
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Symmetry constraints

α, β, γ and δ depend on large scale symmetries of the system
defining the symmetry properties of the turbulence (e.g. rotation
and stratification). Additional to that the expansion

E = αB + γ × B− β ∇× B− δ ×∇× B + . . .

is a relation between polar and axial vectors:

E: polar vector, independent from handedness of coordinate
system

B: axial vector, involves handedness of coordinate system in
definition (curl operator, cross product)

Handedness of coordinate system pure convention (contains no
physics), consistency requires:

α, δ: pseudo tensor

β, γ: true tensors
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Symmetry constraints

Turbulence with rotation and stratification

true tensors: δij , gi , gigj , ΩiΩj , Ωiεijk

pseudo tensors: εijk , Ωi , Ωigj , giεijk

Symmetry constraints allow only certain combinations:

αij = α0(g ·Ω)δij + α1 (giΩj + gjΩi ) , γi = γ0gi + γ1εijkgjΩk

βij = β0 δij + β1 gigj + β2 ΩiΩj , δi = δ0Ωi

The scalars α0 . . . δ0 depend on quantities of the turbulence such
as rms velocity and correlation times scale.

isotropic turbulence: only β

+ stratification: β + γ

+ rotation: β + δ

+ stratification + rotation: α can exist
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Generalized Ohm’s law

What is needed to circumvent Cowling’s theorem?

Crucial for Cowling’s theorem: Impossibility to drive a current
parallel to magnetic field

Cowling’s theorem does not apply to mean field if a mean
current can flow parallel to the mean field (since total field
non-axisymmetric this is not a contradiction!)

j = σ̃
(
E + v × B + γ × B + αB

)
σ̃ contains contributions from η, β and δ.
Ways to circumvent Cowling:

α-effect

anisotropic conductivity (off diagonal elements + δ-effect)
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α2-dynamo

Induction of field parallel to current (producing helical field!)

∂B

∂t
= ∇×

(
αB

)
= αµ0j

Dynamo cycle:
Bt

α−→ Bp
α−→ Bt

Poloidal and toroidal field of similar strength

In general stationary solutions
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αΩ-, α2Ω-dynamo

Dynamo cycle:

Bt
α−→ Bp

Ω−→ Bt

Toroidal field much stronger that poloidal field

In general traveling (along lines of constant Ω) and periodic
solutions
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αΩ-dynamo

∂B

∂t
+

1

r

(
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)
= r sin Bp ·∇Ω

+ η

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
+

1

r sin θ
vp ·∇(r sin θA) = αB + η

(
∆− 1

(r sin θ)2

)
A

Dimensionless measure for strength of Ω- and α-effect

DΩ =
R2∆Ω

ηt
Dα =

Rα

ηt

Dynamo excited if dynamo number

D = DΩDα > Dcrit

Movie: αΩ-dynamo
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αΩ-dynamo with meridional flow

Meridional flow:

Poleward at top of convection zone

Equatorward at bottom of convection zone

Effect of advection:

Equatorward propagation of activity

Correct phase relation between poloidal and toroidal field

Circulation time scale of flow sets dynamo period

Requirement: Sufficiently low turbulent diffusivity

Movie: Flux-transport-dynamo (M. Dikpati, HAO)
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Ω× J dynamo

∂B

∂t
= ∇× [δ × (∇× B)] ∼ ∇× (Ω× j) ∼ ∂j

∂z

similar to α-effect, but additional z-derivative of current

couples poloidal and toroidal field

δ2 dynamo is not possible:

j · E = j · (δ × j) = 0

δ-effect is controversial (not all approximations give a
non-zero effect)

in most situations α dominates
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Dynamos and magnetic helicity

Magnetic helicity (integral measure of field topology):

Hm =

∫
A · B dV

has following conservation law (no helicity fluxes across
boundaries):

d

dt

∫
A · B dV = −2µ0 η

∫
j · B dV

Decomposition into small and large scale part:

d

dt

∫
A · B dV = +2

∫
E · B dV − 2µ0 η

∫
j · B dV

d

dt

∫
A′ · B′ dV = −2

∫
E · B dV − 2µ0 η

∫
j′ · B′ dV
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Dynamos and magnetic helicity

Dynamos have helical fields:

α-effect induces magnetic helicity of same sign on large scale

α-effect induces magnetic helicity of opposite sign on small
scale

Saturation process (on scale ∼ Rmτc):

j′ · B′ = −j · B −→ |B|
|B ′|

∼
√

L

l

j′ · B′ = −αB
2

µ0η
+

ηt

η
j · B

Time scales:

Galaxy: ∼ 1025 years (Rm ∼ 1018, τc ∼ 107 years)

Sun: ∼ 108 years

Earth: ∼ 106 years
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Non-kinematic effects

Proper way to treat them: 3D simulations

Still very challenging

Has been successful for geodynamo, but not for solar dynamo

Semi-analytical treatment of Lorentz-force feedback in mean field
models:

Macroscopic feedback: Change of the mean flow (differential
rotation, meridional flow) through the mean Lorentz-force

f = j× B + j′ × B′

Mean field model including mean field representation of full
MHD equations:
Movie: Non-kinematic flux-transport dynamo

Microscopic feedback: Change of turbulent induction effects
(e.g. α-quenching)
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Microscopic feedback

Feedback of Lorentz force on small scale motions:

Intensity of turbulent motions significantly reduced if
1

2µ0
B2 > 1

2%v2
rms . Typical expression used

α =
αk

1 + B
2

B2
eq

with the equipartition field strength Beq =
√

µ0%vrms

Similar quenching also expected for turbulent diffusivity

Additional quenching of α due to topological constraints
possible (helicity conservation)
Controversial !
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Microscopic feedback

Symmetry of momentum and induction equation v′ ↔ B′:

dv′

dt
=

1

µ0%
(B ·∇)B′ + . . .

dB′

dt
= (B ·∇)v′ + . . .

E = v′ × B′

Strongly motivates magnetic term for α-effect (Pouquet et al.
1976):

α =
1

3
τc

(
1

%
j′ · B′ − ω′ · v′

)

Kinetic α: B + v′ −→ B′ −→ E
Magnetic α: B + B′ −→ v′ −→ E
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Microscopic feedback

From helicity conservation one expects

j′ · B′ ∼ −αB
2

leading to algebraic quenching

α =
αk

1 + g B
2

B2
eq

With the asymptotic expression (steady state)

j′ · B′ = −αB
2

µ0η
+

ηt

η
j · B

we get

α =
αk + η2

t
η

µ0j·B
B2

eq

1 + ηt

η
B

2

B2
eq
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Microscopic feedback

Catastrophic α-quenching (Rm � 1!) in case of steady state and
homogeneous B:

α =
αk

1 + Rm
B

2

B2
eq

If j · B 6= 0 (dynamo generated field) and ηt unquenched:

α ≈ ηt µ0
j · B
B

2
∼ ηt

L
∼ ηt

lc

lc
L
∼ αk

lc
L

In general α-quenching dynamic process: linked to time
evolution of helicity

Boundary conditions matter: Loss of small scale current
helicity can alleviate catastrophic quenching

Catastrophic α-quenching turns large scale dynamo into slow
dynamo
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Microscopic feedback

Stationary state reached on time scale Rmτc :

Galaxy: ∼ 1025 years (Rm ∼ 1018, τc ∼ 107 years)

Sun: ∼ 108 years

Earth: ∼ 106 years

Universe too young for galaxies to worry about stationary
state!

Sun, geodynamo had enough time too saturate

Sun: Possibility that helicity loss through photosphere
alleviates quenching
Geodynamo: Rm ∼ 300 not that catastrophic?

No observational evidence for catastrophic α-quenching, but
fundamental question for theory!
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3D simulations

Why not just solving the full system to account for all non-linear
effects?

Most systems have Re � Rm � 1, requiring high resolution

Large scale dynamos evolve on time scales τc � t � τη,
requiring long runs compared to convective turn over

3D simulations successful for geodynamo

Rm ∼ 300: all relevant magnetic scales resolvable
Incompressible system

Solar dynamo: Ingredients can be simulated

Compressible system: density changes by 106 through
convection zone
Boundary layer effects: Tachocline, difficult to simulate
(strongly subadiabatic stratification, large time scales)
Magnetic structures down to 1000 km most likely important
Evolve 50003 box over 1000 τc !
Small scale dynamos can be simulated (for Pm ∼ 1)
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Summarizing remarks

Destruction of magnetic field:

Turbulent diffusivity: cascade of magnetic energy from large
scale to dissipation scale (advection+reconnection)

Enhances dissipation of large field by a factor Rm

Creation of magnetic field:

Small scale dynamo (non-helical)

Amplification of field on and below scale of turbulence
Stretch-twist-fold-(reconnect)
Produces non-helical field and does not require helical motions
Current research: behavior for Pm � 1

Large scale dynamo (helical)

Amplification of field on scales larger than scale of turbulence
Produces helical field and does require helical motions
Requires rotation + additional symmetry direction
(controversial Ω× J effect does not require helical motions)
Current research: catastrophic vs. non-catastrophic quenching
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