Introduction to CISM_DX and Overview of OpenDX

Michael Gehmeyr

Outline

- Examples
 - Novice User Interface
 - Exploring the structure of the magnetosphere
 - Satellite and map views of geographic model data
 - Advanced Analysis
 - Energy Partitioning in the magnetosphere
 - Additional Features
 - Coordinate system transformations
 - Tools for making visualizations

What is OpenDX?

- An open source data visualization package based upon IBM's commercial Data Explorer (DX) visualization system
 - Full featured software package for visualization scientific, engineering, and analytic data
 - Open system design built upon standard interface environments which allow great flexibility in creating visualizations
 - Very active development community
 Version 4.3 available and thoroughly tested
- www.opendx.org for more information

Data Structures: The Field Object

- A Field is the fundamental programming object in the OpenDX
- 3 main parts
 - Positions
 - Locations in space
 - Connections
 - Explains how the positions relate to each other
 - Data
 - Actual information can be scalar, 3-vector or beyond

Grids

- The connection between points forms the grid
- DX supports 3 grid types
 - irregular
 - irregular positions irregular connections
 - deformed regular
 - irregular positions regular connections
 - regular
 - regular positions regular connections
- Some DX modules require regular connections
 - e.g. slab

Visual Program Environment (VPE)

- User 'writes' a visual program or net to create visualizations
- These programs use the modules provided by OpenDX or modules written by the user to accomplish specific tasks such as data importing, coordinate system rotations, etc

Modules

The Map Module

 Velocity data from the ENLIL model is interpolated along a radial line in the ecliptic plane and displayed in a second window

- The Map Module interpolates data from any DX Object to another DX Object
 - This includes field lines and isosurfaces
 - Relies on the Connections component of OpenDX Field

Thanks to Dusan Odstrcil and Nick Arge

The Compute Module

- Compute module moves OpenDX from just a visualization tool into an analysis tool
 - Basic math, trig functions, logical, & vector operations
- Works on both data and underlying grids

The Mark/Unmark modules

Movie Making

- Example networks and macro modules provide tools for generating movies
 - Easily define camera trajectory and look direction through computational domain
 - Sequencer and compute are used to synchronize camera motion and temporal evolution of model results

OpenDX applications in CISM_DX package

LFM – Magnetospheric Model

• CISM Summer School Students used this network to explore the 3D structure of the Magnetosphere

Thanks to John Lyon and Sarah McGregor

TING Visualizations

- TING is a 3D Global Circulation Model for the Earth's Thermosphere and Ionosphere
 - Variables describing the action of the neutral and ion species in these domains are stored in HDF files
- Networks support satellite views as well as map projections

Coordinate Systems

- SPTransform Module
 - utilizes the Geopack coordinate system library
 - allows
 transformation of
 vectors between
 virtually all Space
 Physics coordinate
 systems

ENLIL – Solar Wind Model

 Network was used as basis for graduate student lab in CISM Summer School

MAS – Coronal Results

- Complicated staggered mesh required writing import module
 - also required transformation from Spherical to Cartesian Coordinates
 - OpenDX modules
 allowed for
 implementation of
 periodic connections in
 phi direction

LFM – L* Calculation

- Electron drift trajectories are used as source points for field line tracing
 - End points are mapped from inner edge into ionosphere
 - L* is
 determined by
 calculating flux
 enclosed in
 orbit
- In DX the field line is an object that can be used for interpolation

Thanks to Scot Elkington

LFM – Pathlines

Streamline

- Path through vector field that is tanget to vectors throughout
- magnetic field lines

Pathline

- Path of fluid element over a period of time
- reverse time to see where elements come from
- Combine pathline with streamline object to monitor flux tube volume as a function of time

