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1 Stratification of a static atmosphere within a

force-free magnetic field

Problem: Write down the general MHD force-balance equation to derive the
effect of the curvature and pressure-gradient forces on the stratification of a
plasma with a potential magnetic field or with a field with only field-aligned
currents. What is the effect of magnetic pressure in a potential or force-free
field compared to that in a flux tube surrounded by a field-free atmosphere?

Solution: You could start with:

ρ
dv

dt
= −∇p + ρg +

1

4π
(∇× B) × B (1)

and then realize that v = 0 while ∇ × B ≡ 0 in a potential field and that
(∇ × B) × B = 0 in a more general force-free field. For a flux tube with a
field free environment, it is the jump in magnetic pressure that needs to be
compensated by the jump in gas pressure going from inside to outside the tube.

2 Bright and dark magnetic features and solar

irradiance

2.1 When are magnetic concentrations in the solar pho-

tosphere seen as bright or dark?

Problem: Strong magnetic fields suppress convective motion. Under which
conditions does this occur in the solar photosphere? Estimate the field strength
at which convective suppression begins to be effective (note: sound speed vs ≈

7 km/s, convective velocity far from upflow vc ≈ 2 kms). Once convection stops,
the gas inside a flux bundle slumps back (“convective collapse”) leaving a largely
evacuated tube with field of roughly 1 kG. Explain the resulting Wilson depres-
sion as a result of the photon mean free path (λ ∼ Hp/2, for pressure scale height
Hp), the formation of sunspot umbrae and photospheric faculae. At what flux,
roughly, does the transition from bright facula to dark pore occur?
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Solution: Equipartition of convective flow dynamic pressure and field pressure
occurs at

B2

eq

4!pi
≈

1

2
ρv2

c , (2)

so that Beq ≈ 30G.
When the cooling plasma inside strong field adjusts to a much reduced grav-

itational stratification, the field strength in the tube approaches that which
matches the gas pressure:

B2

c

4!pi
≈

1

2
ρv2

s , (3)

so that Bc ≈ 100G. But because of the Wilson depression, the photosphere
inside the tube lies lower, and therefore at a higher pressure and related field
strength, in fact resulting in about 2 kG.

If the diameter of a flux bundle exceeds several photon scattering lengths λ
(about half the photospheric pressure scale height Hp), a dark spot occurs as
energy cannot readily diffuse into the tubes interior. The transition between
facula and pore thus occurs at fluxes a few times above about Bc(2Hp)

2 ≈

2 103[G](150 105[cm])2 ≈ 5 1017 Mx.

2.2 Why does solar irradiance peak when the sunspot

number reaches its maximum?

Problem: Discuss the relative roles of spots, pores, and faculae in regulating
the solar irriadiance, and explain why a sunspot surrounded by magnetic faculae,
together forming active regions, result in a dip as the sunspot passes central
meridian, even as the overall irradiance near sunspot maximum is higher than
at sunspot minimum.

Solution: See Chapter by Lean and Woods in Volume 3 for details. Bottom
line: sunspots have their largest contributions as they pass central meridian,
with foreshortening reducing their effects towards the limb, while in contrast
faculae are (a) much more distributed spatially with (b) their strongest effect in
brightening away from disk center as one looks at an angle into the flux tubes to
see the relatively bright walls resulting from looking at deeper and thus hotter
layers of the solar interior.

3 How much of the Sun’s luminosity is available

for conversion into phenomena related to its

magnetic activity?

Problem: Estimate the maximum mechanical energy flux density available to
provide energy into the Sun’s atmospheric magnetic field by random horizontal
displacements of that field (by the “braiding mechanism” originally proposed
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by Parker). Use the approximation that the convective enthalpy flux near the
photosphere is dominated by the latent heat of hydrogen ionization, that the
vertical/depth scale of the convection D equals the sub-photospheric pressure
scale height Hp ≈ 400km and that the horizontal scale is approximately L =
700km. What fraction of the solar luminosity does that amount to? Does solar
outer atmospheric activity approach that limit? Why do you think that is?

Solution: The available mechanical energy flux density for the horizontal
(braiding) motions can be estimated from

Fmech =
1

2
ρvrv

2

h, (4)

for horizontal (h) and vertical/radial (r) components of the convective flows.
The radial velocity can be estimated by equating the solar bolometric flux

density with the energy flux associated with hydrogen ionization:

σT 4

eff = ρvrfiNAχH , (5)

where fI is the ionization fraction (about 0.1), Teff the effective temperature
of 5800K, χH th hydrogen ionization energy, NA Avogadro’s number, and ρ ≈

5 10−7 g/cm2 the characteristic density. This yields vr ≈ 1 km/s. If you add the
thermal enthalpy flux (ρvr(5/2)kT ) the number nearly doubles (see Eq. 38 in
Nordlund et al., 2009, Living Reviews in Solar Physics 6, 2), .

The horizontal flow velocity can be inferred from the equality of time scales
for horizontal and vertical motions:

D

vr
≈

L/2

vh
(6)

or vh ≈ 1 km/s.
Thus Fmech = 1

2
ρvrv

2

h = 2.5 108 erg/s/cm2, or about 0.004σT 4

eff . The so-
lar outer atmosphere uses considerably less than that, because the field strong
enough to couple it into that atmosphere covers only a relatively small fraction
of the surface.

4 Which ions carry the dominant radiative losses

from the solar corona?

Problem: Why are solar coronal observations commonly made in spectral
lines of iron rather than in those of the dominant species, hydrogen and helium?
At what temperature do “heavy elements” (heavier than helium) dominate the
spectrum of a plasma?

Solution: Look at the ionization energies of the elements. At coronal temper-
atures, hydrogen and helium are fully ionized, and the optical depths of their
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bound-free and free-free continua insufficient to lead to substantial emissions.
In contrast, iron has residual bound electrons up to in excess of 10MK, and is
abundant enough to result in strong emission.

5 Solar wind and magnetic braking

5.1 Why is there a solar wind?

Problem a: Demonstrate that a hot solar atmosphere must flow outward.
Show that a static atmosphere on a star with mass M∗ and radius r∗ in which

dp

dr
= −nmHGM∗

1

r2
(7)

for fully ionized hydrogen (n = p/2kT ) and with

T (r) = T (r∗)
(r∗

r

)γ

(8)

slowly decreasing with distance (γ < 1) owing to efficient electron heat conduc-
tion, the pressure at infinity exceeds the pressure of the interstellar medium.

Solution a: The pressure as function of distance is given by

p(r) = p(r∗) exp

[

−

(

GM∗

r∗

) (

mH

2kT∗

) (

1

1 − γ

) (

1 −

(r∗
r

)1−γ
)]

. (9)

For vg = (GM∗/r∗)
1/2 ≈ 450 km/s and vth = (2kT∗/mH)1/2 ≈ 130km/s for a

coronal base temperature of T∗ = 1MK. With a base density of 108 cm−3, the
base pressure is p(r∗) = 0.03dyne/cm2. Compare that to the pressure of the
LISM (≈ 6000K, and 0.2 cm−3).

Problem b: Combine conservation of mass with the momentum equation for
a steady outflow,

ρv
dv

dr
+

dp

dr
= −nmHGM∗

1

r2
, (10)

to estimate at what distance from the Sun an isothermal transsonic wind be-
comes supersonic.

Solution b: Combine the equations for conservation of mass and momentum
with the assumption that the accelleration of the wind does not reach zero at
the transsonic or critical point rc. Then rc/r∗ = 1

2
v2

g/v2

th.

Problem c: Discuss the conditions under which rc < r∗. What kind of stellar
and coronal conditions does this require, and what would happen to the stellar
wind if they were met? Consider other forces that may be important in driving
the wind.
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Solution c: This can happen when the surface gravity is low, as for any giant
star, particularly if the coronal temperature is high, i.e., in the case of active
giant stars. You may explore stellar winds across the HR diagram, noting that
evolved giant stars often have a slow, dense breeze in which radiation pressure
plays a significant role, effectively countering the stellar gravitational pull.

5.2 What is the time scale of magnetic braking for the

present-day Sun of average activity?

Problem a: In a “Weber-Davis” approximation of the solar wind, the angular
momentum per unit mass transported by the solar wind (including the specific
angular momentum of the plasma and the torque density associated with the
magnetic field in the Parker spiral) equals what is carried in a thin, rigidly
rotation shell, L = 2

3
Ωr2

A, where rA is the distance at which the wind’s radial
velocity equals the Alfvén velocity for the radial component of the solar wind,
vA,r = Br/(4πρ)1/2. Combine that with conservation of mass and flux of the
mostly monopolar-like field to derive the “Skumanich relation”: Ω ∝ t−1/2,
using the approximation that the field strength at the base of the heliosphere
scales roughly with angular velocity Ω as Br,0 ∝ Ω.

Solution a:
dJ

dt
= 4πρAr2

Aur,AL, (11)

which, with r2

0Br,0 = r2

ABr,A and Br,A = 4πρAvr,A, yields

dΩ

dt
∝ −Ω3, (12)

resulting in the Skumanich relation for t ≫ t0.

Problem b: For a solar moment of inertia of I ≈ 7 1053 g cm2, and a helio-
spheric flux of Φ =≈ 5 1022 Mx, and an Alvén velocity close to the sound velocity
at 1 MK, what is the time scale of the Sun’s magnetic braking?

Solution b: The expression for angular momentum loss under (a) can be
rewritten as

1

Ω

dΩ

dt
=

2

3

Φ2

(4π)2Ivr,A
, (13)

which with the numbers given yields a braking time scale

Ω/
dΩ

dt
≈ 3 1010 yr, (14)

which in this highly simplified approach turns out longer than the value es-
timated to be of order 109 yr based on solar-wind observations and multi-
dimensional modeling.
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