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1 Turbulent induction effects

The purpose of this problem set is to derive expressions for the mean field electromotive force E under strongly
simplifying assumptions. We start with a few problems in tensor algebra to recall a few mathematical skills
useful for the following exercises.

1.1 Tensor algebra

For the following mathematical derivations it will be useful to use a component based notation for the
manipulation of vector/tensor expressions. A term like (A ·∇)B can be expressed as Ak∂Bi/∂xk, where we
use the “summation convention”, which assumes that the duplication of the index “k” implies summation
k = 1, 2, 3. Using the total antisymmetric Levi-Civita tensor εijk we can express a cross product A×B = C

as Ci = εijkAjBk. Note that εijk is +1 for even perturbations of (1,2,3), -1 for odd perturbations of (1,2,3)
and 0 otherwise. A useful relation for expressions including products of the Levi-Civita tensor is the identity
(“contracted epsilon identity”)

εijkεilm = δjlδkm − δjmδkl (1)

with the Kronecker symbol δik, which is 1 for i = j and 0 otherwise.

Problems:

a) Compute the double contraction εijkεijl.

b) Proof the vector identity

∇ × (A × B) = −(A · ∇)B + A∇ · B + (B · ∇)A − B∇ · A . (2)

c) Any anti-symmetric tensor, aij = −aji, has three independent components (i.e. the elements above
the diagonal). It can therefore be expressed in terms of a 3-component vector using the Levi-Civita
symbol, aij = −ǫijkγk. Derive an inverse expression given the vector γk explicityly in terms of aij .

1.2 Second order correlation approximation

Problems:

a) Start from the induction equation for B′ (Volume I, Eq. 3.44):

∂B′

∂t
= ∇ ×

(

v′ × B + v × B′ − η∇ × B′ + v′ × B′ − v′ × B′

)

, (3)

and assume v = 0, |B′| ≪ |B| and neglect the contribution from magnetic resistivity. Formally
integrate the equation to obtain a solution for B′ and derive an expression for E = v′ × B′. Assume
that v′ has a finite correlation time, τc, and simplify expressions by approximating time integrals with
∫ t

−∞
v′i(t)v

′

k(s)ds = τcv′i(t)v
′

k(t).
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b) Express now all terms using the component notation summarized in Sect. 1.1 and show that the tensors
aij and bijk in the expansion E i = aijBj + bijk∂Bj/∂xk are given by:

aij = τc

(

εiklv′k
∂v′l
∂xj

− εikjv′k
∂v′m
∂xm

)

(4)

bijk = τcεijmv′mv′k . (5)

c) Decompose these tensors into the terms α, γ and β defined through:

αij =
1

2
(aij + aji)

γi = −
1

2
εijkajk

βij =
1

4
(εiklbjkl + εjklbikl) .

Compute the trace αii and βii. To which physical quantities are they related?

d) Make now the additional assumption of isotropy, which implies that αij , βij , as well as the correlation

tensor v′iv
′

j are diagonal, i.e. αij = αδij . Compute the scalar α-effect and the turbulent diffusivity ηt.
How is γ related to ηt? Discuss under which conditions these effects exist.

2 “Biermann battery”

The MHD induction equation is linear in B, which implies that a dynamo cannot produce magnetic field
if the initial condition was B = 0. Start from the more general form of Ohm’s law and keep the electron
pressure term. Rederive the induction equation and discuss under which conditions the additional term can
act as an inhomogeneous source term independent of B. Discuss the similarity with the vorticity equation.
Describe situations in which this term could have produced weak magnetic seed field in the early universe.
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