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Solutions to Problems 1-3 
 
Problem 1 
 
(a)  Dropping the radiation term yields a partial differential equation (PDE) that can be 
solved using the method of separation of variables: 
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For an ideal gas at constant pressure n = n0 T0/T, so the PDE for T becomes 
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Setting T(s, t) = f(t) g(t) yields: 
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where K is the separation constant.  Solving the ODE for f gives 
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where C1 is a constant of integration.  Solving the ODE for g gives 
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where C2 and C3 are also constants of integration.  The solution for T is therefore 
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To evaluate the three integration constants, C1, C2, and C3 we use the three conditions: 
 

T (0,  t)  =   0;!!!!!!!!!!!T (s,  t)
!s

!
s=L

=  0;!!!!!!!!!!T (L,  0)  =  T0 . 

 
The first condition gives C3 = 0, the second condition gives C2 = –7KL/2, and the third 
condition gives C1 = – (7/4) KL2 T0

–2/7.  Substitution of the values into the above 
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expression yields the solution given in part (a) of the problem.  The value of K is not 
needed, because it cancels out of the equations.  The cancellation occurs because of the 
problem's relatively simple initial and boundary conditions. 
 

 
 
(b)  In the absence of thermal conduction 
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Setting α  =  –1, and integrating yields the solution: 
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The key difference between conductive and radiative cooling is that  conductive cooling 
becomes slower  as the temperature decreases while radiative cooling becomes faster.  
Given enough time, radiative cooling will  eventually dominate, no matter how slow it is 
initially. 
 
(c)  The initial (i.e. linear) conductive and radiative cooling times for these values are: 
 

τC0  =  1.23 s      and     τR0  =  1.55 × 105 s   with  τR0/τC0  = 1.27 × 105. 
 
Initially the radiative cooling is more than a hundred thousand times slower than the 
conductive cooling. 
 
(d)  At the loop top 
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so the local, nonlinear cooling time there is 
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The local, nonlinear radiative time is 
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The two cooling times are equal when 
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where Tsw is the temperature where the switch over occurs.  For pure conductive cooling, 
the switch over time, tsw, is 
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The plasma has to cool by about a factor of 6 before radiative cooling becomes important, 
i.e. 

T0/Tsw  =  6.10 , 
 
corresponding to a temperature of Tsw = 4.92 × 106 K.  The time of the switch over is 
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tsw = 196 s . 

 
Thus, when a heated loop disconnects from the reconnection site, it only takes about three 
minutes before radiative cooling starts to dominate. 
 
 
Problem 2 
 
The x and y components of Faraday' equation are: 
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Using Leibniz's rule (also known as the fundamental theorem of calculus), we can write 
the x component of Faraday's equation as 
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where y0 is the location of the x-line.  Because the field is line-tied at y = 0, Ez(x, 0) = 0.  
Also by definition Bx (0, y0)  =  0 and Ez(0, y0)  = E0.  Consequently, 
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Similarly, along the x-axis, we have 
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Since the magnitudes of the magnetic flux between y = 0 and y0 and between x = 0 and x0 
are equal, we obtain 
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˙ x 0  =  E0  / By (x0,0) 
 
 
Problem 3 
 
Substitution into the expression in Problem 1 yields: 
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which upon integration yields: 
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! 

–(1 +  x0
2 /a2)  =  t /"A  +  constant  

 
where τA  = B0 a/(2E0).  Since it is assumed that x0 = 0 at t = 0, the value of the constant is 
–1.  So the solution for x0 is 
 

! 

x0  =  a  t /("A  –  t)  
 
and the solution for 
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The corresponding plot for x0 and

! 

˙ x 0  is: 
 

 
The separatrix distance x0 becomes infinite at t  = tA because all of the flux passing 
through the surface has reconnected by this time.  The separatrix speed, 

! 

˙ x 0 , is infinite at 
both t  =  0 and t  =  1.0 when By(x0, 0) is zero.  A minimum separatrix speed of 

! 

8 /(3 3) 
(a/τA)  occurs at t  =  τA/4. 
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